Christoffel Transforms and Hermitian Linear Functionals
نویسندگان
چکیده
منابع مشابه
Polynomial perturbations of hermitian linear functionals and difference equations
This paper is devoted to the study of general (Laurent) polynomial modifications of moment functionals on the unit circle, i.e., associated with hermitian Toeplitz matrices. We present a new approach which allows us to study polynomial modifications of arbitrary degree. The main objective is the characterization of the quasi-definiteness of the functionals involved in the problem in terms of a ...
متن کاملAlmost multiplicative linear functionals and approximate spectrum
We define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ-approximate spectrum σ_δ (a) of a is compact. The relation between the δ-approximate spectrum and the usual spectrum is investigated. Also an analogue of the classical Gleason-Kahane-Zelazko theorem is established: For each ε>0, there is δ>0 such that if ϕ is...
متن کاملalmost multiplicative linear functionals and approximate spectrum
we define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital banach algebra a and show that the δ-approximate spectrum σ_δ (a) of a is compact. the relation between the δ-approximate spectrum and the usual spectrum is investigated. also an analogue of the classical gleason-kahane-zelazko theorem is established: for each ε>0, there is δ>0 such that if ϕ is...
متن کاملMultivariable Christoffel–Darboux Kernels and Characteristic Polynomials of Random Hermitian Matrices
We study multivariable Christoffel–Darboux kernels, which may be viewed as reproducing kernels for antisymmetric orthogonal polynomials, and also as correlation functions for products of characteristic polynomials of random Hermitian matrices. Using their interpretation as reproducing kernels, we obtain simple proofs of Pfaffian and determinant formulas, as well as Schur polynomial expansions, ...
متن کاملSymmetries of Linear Functionals
It is shown that a linear functional on a space of functions can be described by G, a group of its symmetries, together with the restriction of to certain G-invariant functions. This simple consequence of invariant theory has long been used, implicitly, in the construction of numerical integration rules. It is the author's hope that, by showing that these ideas have nothing to do with the origi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mediterranean Journal of Mathematics
سال: 2005
ISSN: 1660-5446,1660-5454
DOI: 10.1007/s00009-005-0057-3